3.247 \(\int \cot ^5(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=151 \[ \frac{\left (a^2 A-2 a b B-A b^2\right ) \cot ^2(c+d x)}{2 d}+\frac{\left (a^2 A-2 a b B-A b^2\right ) \log (\sin (c+d x))}{d}+x \left (a^2 B+2 a A b-b^2 B\right )-\frac{a^2 A \cot ^4(c+d x)}{4 d}-\frac{\left (b^2 B-a (a B+2 A b)\right ) \cot (c+d x)}{d}-\frac{a (a B+2 A b) \cot ^3(c+d x)}{3 d} \]

[Out]

(2*a*A*b + a^2*B - b^2*B)*x - ((b^2*B - a*(2*A*b + a*B))*Cot[c + d*x])/d + ((a^2*A - A*b^2 - 2*a*b*B)*Cot[c +
d*x]^2)/(2*d) - (a*(2*A*b + a*B)*Cot[c + d*x]^3)/(3*d) - (a^2*A*Cot[c + d*x]^4)/(4*d) + ((a^2*A - A*b^2 - 2*a*
b*B)*Log[Sin[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.300629, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {3604, 3628, 3529, 3531, 3475} \[ \frac{\left (a^2 A-2 a b B-A b^2\right ) \cot ^2(c+d x)}{2 d}+\frac{\left (a^2 A-2 a b B-A b^2\right ) \log (\sin (c+d x))}{d}+x \left (a^2 B+2 a A b-b^2 B\right )-\frac{a^2 A \cot ^4(c+d x)}{4 d}-\frac{\left (b^2 B-a (a B+2 A b)\right ) \cot (c+d x)}{d}-\frac{a (a B+2 A b) \cot ^3(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(2*a*A*b + a^2*B - b^2*B)*x - ((b^2*B - a*(2*A*b + a*B))*Cot[c + d*x])/d + ((a^2*A - A*b^2 - 2*a*b*B)*Cot[c +
d*x]^2)/(2*d) - (a*(2*A*b + a*B)*Cot[c + d*x]^3)/(3*d) - (a^2*A*Cot[c + d*x]^4)/(4*d) + ((a^2*A - A*b^2 - 2*a*
b*B)*Log[Sin[c + d*x]])/d

Rule 3604

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((B*c - A*d)*(b*c - a*d)^2*(c + d*Tan[e + f*x])^(n + 1))/(f*d^2*(n +
1)*(c^2 + d^2)), x] + Dist[1/(d*(c^2 + d^2)), Int[(c + d*Tan[e + f*x])^(n + 1)*Simp[B*(b*c - a*d)^2 + A*d*(a^2
*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2*c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))*Tan[e + f*x] + b^2*B*(c^
2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^
2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]

Rule 3628

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^5(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx &=-\frac{a^2 A \cot ^4(c+d x)}{4 d}+\int \cot ^4(c+d x) \left (a (2 A b+a B)-\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)+b^2 B \tan ^2(c+d x)\right ) \, dx\\ &=-\frac{a (2 A b+a B) \cot ^3(c+d x)}{3 d}-\frac{a^2 A \cot ^4(c+d x)}{4 d}+\int \cot ^3(c+d x) \left (-a^2 A+A b^2+2 a b B+\left (b^2 B-a (2 A b+a B)\right ) \tan (c+d x)\right ) \, dx\\ &=\frac{\left (a^2 A-A b^2-2 a b B\right ) \cot ^2(c+d x)}{2 d}-\frac{a (2 A b+a B) \cot ^3(c+d x)}{3 d}-\frac{a^2 A \cot ^4(c+d x)}{4 d}+\int \cot ^2(c+d x) \left (b^2 B-a (2 A b+a B)+\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)\right ) \, dx\\ &=-\frac{\left (b^2 B-a (2 A b+a B)\right ) \cot (c+d x)}{d}+\frac{\left (a^2 A-A b^2-2 a b B\right ) \cot ^2(c+d x)}{2 d}-\frac{a (2 A b+a B) \cot ^3(c+d x)}{3 d}-\frac{a^2 A \cot ^4(c+d x)}{4 d}+\int \cot (c+d x) \left (a^2 A-A b^2-2 a b B+\left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)\right ) \, dx\\ &=\left (2 a A b+a^2 B-b^2 B\right ) x-\frac{\left (b^2 B-a (2 A b+a B)\right ) \cot (c+d x)}{d}+\frac{\left (a^2 A-A b^2-2 a b B\right ) \cot ^2(c+d x)}{2 d}-\frac{a (2 A b+a B) \cot ^3(c+d x)}{3 d}-\frac{a^2 A \cot ^4(c+d x)}{4 d}+\left (a^2 A-A b^2-2 a b B\right ) \int \cot (c+d x) \, dx\\ &=\left (2 a A b+a^2 B-b^2 B\right ) x-\frac{\left (b^2 B-a (2 A b+a B)\right ) \cot (c+d x)}{d}+\frac{\left (a^2 A-A b^2-2 a b B\right ) \cot ^2(c+d x)}{2 d}-\frac{a (2 A b+a B) \cot ^3(c+d x)}{3 d}-\frac{a^2 A \cot ^4(c+d x)}{4 d}+\frac{\left (a^2 A-A b^2-2 a b B\right ) \log (\sin (c+d x))}{d}\\ \end{align*}

Mathematica [C]  time = 3.03804, size = 180, normalized size = 1.19 \[ \frac{6 \left (a^2 A-2 a b B-A b^2\right ) \cot ^2(c+d x)+12 \left (a^2 B+2 a A b-b^2 B\right ) \cot (c+d x)-6 \left (\left (-2 a^2 A+4 a b B+2 A b^2\right ) \log (\tan (c+d x))+(a-i b)^2 (A-i B) \log (\tan (c+d x)+i)+(a+i b)^2 (A+i B) \log (-\tan (c+d x)+i)\right )-3 a^2 A \cot ^4(c+d x)-4 a (a B+2 A b) \cot ^3(c+d x)}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(12*(2*a*A*b + a^2*B - b^2*B)*Cot[c + d*x] + 6*(a^2*A - A*b^2 - 2*a*b*B)*Cot[c + d*x]^2 - 4*a*(2*A*b + a*B)*Co
t[c + d*x]^3 - 3*a^2*A*Cot[c + d*x]^4 - 6*((a + I*b)^2*(A + I*B)*Log[I - Tan[c + d*x]] + (-2*a^2*A + 2*A*b^2 +
 4*a*b*B)*Log[Tan[c + d*x]] + (a - I*b)^2*(A - I*B)*Log[I + Tan[c + d*x]]))/(12*d)

________________________________________________________________________________________

Maple [A]  time = 0.076, size = 238, normalized size = 1.6 \begin{align*} -{\frac{A{b}^{2} \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{2\,d}}-{\frac{A{b}^{2}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{b}^{2}Bx-{\frac{B\cot \left ( dx+c \right ){b}^{2}}{d}}-{\frac{B{b}^{2}c}{d}}-{\frac{2\,Aab \left ( \cot \left ( dx+c \right ) \right ) ^{3}}{3\,d}}+2\,{\frac{A\cot \left ( dx+c \right ) ab}{d}}+2\,Axab+2\,{\frac{Aabc}{d}}-{\frac{Bab \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{d}}-2\,{\frac{Bab\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{{a}^{2}A \left ( \cot \left ( dx+c \right ) \right ) ^{4}}{4\,d}}+{\frac{{a}^{2}A \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{2\,d}}+{\frac{{a}^{2}A\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{{a}^{2}B \left ( \cot \left ( dx+c \right ) \right ) ^{3}}{3\,d}}+{\frac{B\cot \left ( dx+c \right ){a}^{2}}{d}}+{a}^{2}Bx+{\frac{{a}^{2}Bc}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^5*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x)

[Out]

-1/2/d*A*b^2*cot(d*x+c)^2-1/d*A*b^2*ln(sin(d*x+c))-b^2*B*x-1/d*B*cot(d*x+c)*b^2-1/d*B*b^2*c-2/3/d*A*a*b*cot(d*
x+c)^3+2/d*A*cot(d*x+c)*a*b+2*A*x*a*b+2/d*A*a*b*c-1/d*B*a*b*cot(d*x+c)^2-2/d*B*a*b*ln(sin(d*x+c))-1/4*a^2*A*co
t(d*x+c)^4/d+1/2*a^2*A*cot(d*x+c)^2/d+a^2*A*ln(sin(d*x+c))/d-1/3/d*a^2*B*cot(d*x+c)^3+1/d*B*cot(d*x+c)*a^2+a^2
*B*x+1/d*B*a^2*c

________________________________________________________________________________________

Maxima [A]  time = 1.52148, size = 236, normalized size = 1.56 \begin{align*} \frac{12 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )}{\left (d x + c\right )} - 6 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 12 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\tan \left (d x + c\right )\right ) + \frac{12 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )} \tan \left (d x + c\right )^{3} - 3 \, A a^{2} + 6 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \tan \left (d x + c\right )^{2} - 4 \,{\left (B a^{2} + 2 \, A a b\right )} \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{4}}}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(12*(B*a^2 + 2*A*a*b - B*b^2)*(d*x + c) - 6*(A*a^2 - 2*B*a*b - A*b^2)*log(tan(d*x + c)^2 + 1) + 12*(A*a^2
 - 2*B*a*b - A*b^2)*log(tan(d*x + c)) + (12*(B*a^2 + 2*A*a*b - B*b^2)*tan(d*x + c)^3 - 3*A*a^2 + 6*(A*a^2 - 2*
B*a*b - A*b^2)*tan(d*x + c)^2 - 4*(B*a^2 + 2*A*a*b)*tan(d*x + c))/tan(d*x + c)^4)/d

________________________________________________________________________________________

Fricas [A]  time = 2.00081, size = 446, normalized size = 2.95 \begin{align*} \frac{6 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{4} + 3 \,{\left (3 \, A a^{2} - 4 \, B a b - 2 \, A b^{2} + 4 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )} d x\right )} \tan \left (d x + c\right )^{4} + 12 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )} \tan \left (d x + c\right )^{3} - 3 \, A a^{2} + 6 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \tan \left (d x + c\right )^{2} - 4 \,{\left (B a^{2} + 2 \, A a b\right )} \tan \left (d x + c\right )}{12 \, d \tan \left (d x + c\right )^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/12*(6*(A*a^2 - 2*B*a*b - A*b^2)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^4 + 3*(3*A*a^2 - 4*B*a
*b - 2*A*b^2 + 4*(B*a^2 + 2*A*a*b - B*b^2)*d*x)*tan(d*x + c)^4 + 12*(B*a^2 + 2*A*a*b - B*b^2)*tan(d*x + c)^3 -
 3*A*a^2 + 6*(A*a^2 - 2*B*a*b - A*b^2)*tan(d*x + c)^2 - 4*(B*a^2 + 2*A*a*b)*tan(d*x + c))/(d*tan(d*x + c)^4)

________________________________________________________________________________________

Sympy [A]  time = 14.483, size = 313, normalized size = 2.07 \begin{align*} \begin{cases} \tilde{\infty } A a^{2} x & \text{for}\: \left (c = 0 \vee c = - d x\right ) \wedge \left (c = - d x \vee d = 0\right ) \\x \left (A + B \tan{\left (c \right )}\right ) \left (a + b \tan{\left (c \right )}\right )^{2} \cot ^{5}{\left (c \right )} & \text{for}\: d = 0 \\- \frac{A a^{2} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{A a^{2} \log{\left (\tan{\left (c + d x \right )} \right )}}{d} + \frac{A a^{2}}{2 d \tan ^{2}{\left (c + d x \right )}} - \frac{A a^{2}}{4 d \tan ^{4}{\left (c + d x \right )}} + 2 A a b x + \frac{2 A a b}{d \tan{\left (c + d x \right )}} - \frac{2 A a b}{3 d \tan ^{3}{\left (c + d x \right )}} + \frac{A b^{2} \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - \frac{A b^{2} \log{\left (\tan{\left (c + d x \right )} \right )}}{d} - \frac{A b^{2}}{2 d \tan ^{2}{\left (c + d x \right )}} + B a^{2} x + \frac{B a^{2}}{d \tan{\left (c + d x \right )}} - \frac{B a^{2}}{3 d \tan ^{3}{\left (c + d x \right )}} + \frac{B a b \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{d} - \frac{2 B a b \log{\left (\tan{\left (c + d x \right )} \right )}}{d} - \frac{B a b}{d \tan ^{2}{\left (c + d x \right )}} - B b^{2} x - \frac{B b^{2}}{d \tan{\left (c + d x \right )}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**5*(a+b*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)

[Out]

Piecewise((zoo*A*a**2*x, (Eq(c, 0) | Eq(c, -d*x)) & (Eq(d, 0) | Eq(c, -d*x))), (x*(A + B*tan(c))*(a + b*tan(c)
)**2*cot(c)**5, Eq(d, 0)), (-A*a**2*log(tan(c + d*x)**2 + 1)/(2*d) + A*a**2*log(tan(c + d*x))/d + A*a**2/(2*d*
tan(c + d*x)**2) - A*a**2/(4*d*tan(c + d*x)**4) + 2*A*a*b*x + 2*A*a*b/(d*tan(c + d*x)) - 2*A*a*b/(3*d*tan(c +
d*x)**3) + A*b**2*log(tan(c + d*x)**2 + 1)/(2*d) - A*b**2*log(tan(c + d*x))/d - A*b**2/(2*d*tan(c + d*x)**2) +
 B*a**2*x + B*a**2/(d*tan(c + d*x)) - B*a**2/(3*d*tan(c + d*x)**3) + B*a*b*log(tan(c + d*x)**2 + 1)/d - 2*B*a*
b*log(tan(c + d*x))/d - B*a*b/(d*tan(c + d*x)**2) - B*b**2*x - B*b**2/(d*tan(c + d*x)), True))

________________________________________________________________________________________

Giac [B]  time = 1.53174, size = 587, normalized size = 3.89 \begin{align*} -\frac{3 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 8 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 16 \, A a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 36 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 48 \, B a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 24 \, A b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 120 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 240 \, A a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 96 \, B b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 192 \,{\left (B a^{2} + 2 \, A a b - B b^{2}\right )}{\left (d x + c\right )} + 192 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right ) - 192 \,{\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) + \frac{400 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 800 \, B a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 400 \, A b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 120 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 240 \, A a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 96 \, B b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 36 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 48 \, B a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 24 \, A b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 8 \, B a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 16 \, A a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, A a^{2}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4}}}{192 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

-1/192*(3*A*a^2*tan(1/2*d*x + 1/2*c)^4 - 8*B*a^2*tan(1/2*d*x + 1/2*c)^3 - 16*A*a*b*tan(1/2*d*x + 1/2*c)^3 - 36
*A*a^2*tan(1/2*d*x + 1/2*c)^2 + 48*B*a*b*tan(1/2*d*x + 1/2*c)^2 + 24*A*b^2*tan(1/2*d*x + 1/2*c)^2 + 120*B*a^2*
tan(1/2*d*x + 1/2*c) + 240*A*a*b*tan(1/2*d*x + 1/2*c) - 96*B*b^2*tan(1/2*d*x + 1/2*c) - 192*(B*a^2 + 2*A*a*b -
 B*b^2)*(d*x + c) + 192*(A*a^2 - 2*B*a*b - A*b^2)*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 192*(A*a^2 - 2*B*a*b - A*b
^2)*log(abs(tan(1/2*d*x + 1/2*c))) + (400*A*a^2*tan(1/2*d*x + 1/2*c)^4 - 800*B*a*b*tan(1/2*d*x + 1/2*c)^4 - 40
0*A*b^2*tan(1/2*d*x + 1/2*c)^4 - 120*B*a^2*tan(1/2*d*x + 1/2*c)^3 - 240*A*a*b*tan(1/2*d*x + 1/2*c)^3 + 96*B*b^
2*tan(1/2*d*x + 1/2*c)^3 - 36*A*a^2*tan(1/2*d*x + 1/2*c)^2 + 48*B*a*b*tan(1/2*d*x + 1/2*c)^2 + 24*A*b^2*tan(1/
2*d*x + 1/2*c)^2 + 8*B*a^2*tan(1/2*d*x + 1/2*c) + 16*A*a*b*tan(1/2*d*x + 1/2*c) + 3*A*a^2)/tan(1/2*d*x + 1/2*c
)^4)/d